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SYNOPSIS

Reccut investisntions on groundshock phenomcna indicate that the
dynamic recponse of certain non-lincar (locking) media, mey approximate
the bchavior of cohesive pranular soils and porous rock under high pres-
sures. There is a considerable body of fairly recent American and USSR
scientific literature on this topic. It secms that the Russian investi-
gations parallecl our efforts in this field. The theory of wave propaga-
tion in such materials should have application to the design of underground
shelters at very high pressure levels and may shed some additional light,
by these relatively simple means on problems associated with phenomena
ncar ground zero, in case of surface bursts or underground explosions.

In Scetions II and III results of current investigations are presented.



I. RECENT AND CURRENT INVESTIGATIONS.

As & result of our investigations into groundshock phenomena in the
recent years, we have conjectured that the bebavior of porous or granular
solids (such as dry sand or porous rock) could be characterized by a med-
ium which under uniaxial compression exhibits a stress-strain diagram which
tends to become parallel vith the stxress axis beyond a certain critical
strain, (Figure 1). Suck & stress-strain disgram may be replaced by vari-
ous bi-linear approximations, and such materials are currently referred
to as locking media, or materials of limited compressibility, (Figure 2a,
b, ¢, 4).

‘The static behavior of such materials has been explored to a consi-
derable extent since about 1957 [Refereaces 1, 2, 3, 4],

The dynamic problem for the case of the upwards curving stress-strain
diagram has been considered previously, [References 5 and 6], but the assump-
tion of a stress-strain curve having a continuous derivative, (Figure 1)
makes it difficult to obtain closed form solutions. Some more recent ef-
forts in this direction provide additional results for specific initial
conditions, [Reference 7].

The linear approximations shown on Figure 2a, b, ¢ have resulted in
relatively simple solutions and some of these results have been applied
vith some success to the prediction of groundshock phenomena, [References
8 and 9] and have also been published in the open literature, [References
10 and 11]). A medium vhich shows a residual elasticity, (Figure 2d), is
treated in Bection II of this report.
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If the tvo or three dimsnzional case is considered, one may replace
. the stress-strain diagram of the uniaxial case with a stress-dilatation
diagranm to obtain similar results. After the critical value of the dila-
tation is reasched, & post compection yield condition must be specified.
One may, for example, aseums that the medium behaves like an inviscid
fludd or that it follows Coulombs lew of failure. Buch a medium for the
cage of spherical symmetry is treated in Sestion III of this report.

During our researches into this subjeet we also noted that a ' uneider.
able interest in these topics exists in the USSR, as shown by Refercuce
18, 13, 14, 15, 16 and 17. It appears, that the Russian investigeilons
parallel our own efforts, and the extensive numerical work of Refereance )T,
indicates that the applisation of these researches is probably also seri-
ously considered. B8ignifiscantly, most of these papers are directed towarda
problems assoclated with explosions and apparently the USSR rcaearchers
suffer from lack of experimental data Just as much a8 our own lnvestija-
tions do.

As the result of our own work and the review of the USSR literature,
it 48 belleved that these inveatigations bave application to +he following
topics of current interest:

(a) Groundshock phenemena in dry granular and cohesive soils, and
porous rock.

(b) Feasibility studdes for the design of underground mhclt.ern near
groumad zero.

(e) Groundshack phemomesa in the neighborhood of ground rero of
surface bursts. ‘

(4) Puencmena ossosiated with nuclear explosions contained in
umderground cavitiea.
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Numerical evaluations ir a few specific cases leads us to believe
that this approach may indeed contribute to the solution of the above
problem, [References 18 and 19]. It appears that the intrinsic dissipative
behavior of the medium ie the cruciel charanteristic which mskes it approp-
riate for such investigations. Further theoretical and experimental work
in this field may be quite fruitful.

In the following Sections II and III of this rcport some additional
contributions to the theory of locking medin are presented.

In Section II a medium with a stress-strain diagram as shown on Fig-
ure 24 is considered. The purpose of this investigation is to clarify
the effects of "residual elasticity", that 1s, elastic action which persists
artqr compaction or locking has occurred. This modification of the strese-
strain relationship is of importance since it brings the idealized theory
closer to the anticipated behavior of real materials. In our first and
second report to the MITRE Corporation [References 18 and 19] the effects
of this behavior were numerically evaluated, and it was shown that small
residual elasticity after compaction does not significantly influence
the attenuation of peak stresses in the medium at depth of 500 feet or
more, as compared to a locking medium without such residual elasticity.
This medium also permits us to draw certain conclusions regarding non-
linear effects due 4o the influence of the high intensity airslap in the
vicinity of ground zero.

In Scction III spherical waves in an ideal locking medium are in-
vestigated. These results prove to be useful in clarifying the close-in
effects of the exploding casing at the point of impact. Numerical evalua-

tions of this work will appear in our subsequent reports on this subject.
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SECTION II

WAVE PROPAGATION IN A PLASTIC-ELASTIC MEDIUM

By

Richard Skalak



I. STATEMENT OF PROBLEM.

The response of a semi-infinite body of plastic-slastic medium, ¥ig-
ure 1, is to be found due to & blast wave pressure spplied to ‘he swface
of the medium. The atress-strain curve of the material is sghown in Fig-
ure 2. The pressure loading is assumed to be applied to the entire sur~
face of the medium so that the problem is one-dimensional. The type of
time history of the surface pressure considered is shown in Figure 3. The

strains are assumed to be small throughout.

II. GOVERNING EQUATIONS,

(a) The SBhock Wave.,
The applied loading generates a plane shock wave which comprosass
the medium from its initial state to a state corresponding to some point
on the inclined portion of the stress-strain curve. The velocity of

propagation of this shock wave at any time is

i - J—g— (1)

vhere E is the secant modulus of elasticity, Figure 2

- g
£ . |28 (2)
‘l

where Oyq? €, 8TC the normal vertical stress and strain immediately behind
the shock front, the density p is assumed constant because the strains are
assumed to be small,

The particle velocity behind the shock wave is

g
i, = 20

(3)
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In terms of the modulus B of the inclined portion of the stress«
strain curve, Figure 2, the value of <, can be written as

o o
'-"o*'i'." S "_.5 (¥)
pc

vhere ¢, is the plastic strain shown in Figure 2, and o = E/p.
From Equations (1) through (k) it follows that:

. 1
Ogs = PS¢ f —_E:'; (5)
1-(3)
u, - €, i. —-!'—i:-z- ~ (6)
1-(3)

(b) Reglon Behind the Shock Wave.

Behind the shocl wave the state of the medium is assumed to correw
spond to points on the inclined portion of the stress-strain curve, Fig-
ure 2. If u.is the downward displacement of eny particle from its orig-

inal position, the equation of motion is:

aaz -

5= % ™
By definition, considering compressive strains positive,

¢= = g"; (8)
Since ¢, 1s & constant, (8) ylelds

e - <)

——. - 9)

k4



From Equation (9) and

L (¢ - .0) B (10)

it follows

do
- 2 < -

The U in Equations (7) and (11) 41s the particle velocity. From thess

squations,

(12)

IIT. BOLUTIOK FOR A GIVEN SURFACE PRESSURE HISTORY.

Consider a genersl field point (z, t) in Figure 4 and two points

labeled 1 and 2 on the shock curve located by the characteristics passing

through the field point as shown in Figure k. By virtue of Equations (7),

(11) and (12), the entire field behind the shock wave has the form

o, = £z ~ ct) + g(z + ct) (13)

U = % [f(z - ct) - g(s + cti] (1)

where f and g are unknown functions.

Writing Equations (13) end (14) for the point 2 in Figure bt

0,0 = (2, - ct,) + g(s, + ct,) ‘ (15)

{;2 - % [f(za - cta) - 5(:2 + ctaz] (16)



b

From (15) and (16)

R
f(la - cte) - % 2 * 3o &2 (17)
and since along the characteristic (s - ct) is comstant, it follows that
for the field point s, t indicated in Figure b

(s -ct) = Fop + g Gy (18)
Similarly, considering point 1 it is found that for the field point g, ¢
g(s + ct) '%cgl'é'g'ﬁl (19)

The solution for any field point can nov be expressed in terms of
values o, and u o directly behind the shock front by substituting (18) and

(19) into (13) and (1i):
1 E ,
o = 5 (g + 95) = 55 (4 - &) (20)

he gl i) - 5 (o, - a,) (21)

The location of the shock front za(t) and the values of stress and
velocity ¢, and \‘xa at the shock front are unknown in advance for a given
surfece pressure history. However, if the location of the shock wave zs(t)
is determined, then ¢ _ and \‘z‘ are given by Equations (5) and (6) and the
remainder of the field can be found from (20) and (21). The solution 1is
completed by establishing ',(t) for a given surface pressure history as
follows:

Consider a field point vhich i on the surface £ = O as shown in
Figure (5). PFor this point the stress o, &lven by Equation (20) is the

applied pressure p at time t. By substituting the values for Ous and u o
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from Equations (5) and (6) into Equation (20), an equation relating p, 2,

and g, is obtained, which after simplification reads:

2

£ )
2 4 1
E:"c-la'c+t (22)

If the point (0, t) in Mgure (5) is assumed to move along the t axis,
the pressure p(t) is the given surface pressure history. The heights
shovn in Figure (5) labeled z) and u, may then be aleo considered to be
functions of t. Bimilarly the times tl and t2 may be considered as funce

tions of t. The time t, is related to t by

1

3
1
t -t-c—-

1 (23)

Differentiating with respect to t,

1ty o
at ¢ dt, dt !
daz

dtl

|

The derivative is vhat is meant by il in Equation (22), for example.

From Equation (24)

dtl

F* L (25)
dzl
Defining z{ to be the derivative 1==, it follows, using Equation (25),

dz de, dat 2. ¢
YRR S S S | (26)
1 aT H'EI at " o+ ;l
S8imilarly, using
)
ta - ¢t 4+ e (27)
1t 1s found that
dz z,.C
2 2
L T " T Z; (28)
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From Equations (26) and (28)

ol ! 2 2

c " c+ ¥, and - c-!a (29)
Substituting Equations (29) into (22)

2c - g

B, ¥ " ) - 2 (30)

vhere p 1s p(t) and the primes denote differentiation with respect to this
same t. Equation (30) can then be integrated with respect to t to yleld
the final equation

2¢

Ec. I(t) = z, - %, (31)

vhere I(t) 1s the impulse of the applied pressure per unit area defined by

t
I(t) = f p at (32)
o
The boundary condition r, =z, = 0 at t = O was also used in deriving (31).

Equation (31) defines the locus :‘(t) of the shock location in the

gz, t plane and completes the solution of the problem.

IV. COMPUTATIONAL PROCEDURE.

The Equation (31) may be used to solve for the location of the shock
fropt z, at a time t, when the position 5 18 known for the earlier time
tl' To begin the computations using Equation (31) it is necessary to
establish Z, at some early time tl as a starting point, A first and a
second apprpxima.tibn are given below and higher order approximations can

be dsveloped by similar procedures.
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a) First Approximation for Bhort Times.

A pressure time history such as shovu in Figurs 3 could be replaced
by a constant pressure Py for & short tite t, 80 that the impulse during
this interval is conserved. Then for the time interval selected 62 is &

constant ., and may be computed from Equstion (5)1

Iao - ¢ m‘ (33)

The value of 3! is also a constant s!. and is given by Equation (28). Then

Q 20

[:{L-t - £y = thot, (34)
o

A starting point is nov established by using

zl(t) - 2y (35)
and
22
t-to + 0_20 (36)

b) Becond Approximation for Short Times.

A pressure time history such as shown in Figure 3 can be represented
by & Taylor series:

2
p(t) -p°+p8t+p;£—+...... (37)

The values of £ and 2z, may also be written in series form:

ll - klt+k2t2"'k3t3 + o 0 0 0 (38)

T, = m1t+m2t_?+m3t3+.... (39)
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The impulse applied at the surface, Equation (32) 1s:
e 3
‘ t wlt
1(t) » Pt +Py 5 + Pogt e (40)
Substituting (38), (39) and (4O) into Equation (30) and equating coeffici-

ents of each power of t yields:

B P " m-K (k1)
'!:';'3"’6 - m; -k (42)

etc. o o o o

The functions zl(t) , Equation (38), must a.so be such that at the appropri-
ate time it 1s equal to the value of z, of an earlier time. This re-

quirement may be written as:

2zl(t)

2)(t) = 2t - (43)

vhere all brackets mean "a function of". Substituting (38) and (39) in

Equation (43) ylelds

kt+kt2+kt3+... . -ml(t-%(klt+k

2 3
1 2 3 t 4+ k. t7 +e.s

+my(t - 20t + kb2 4 k6?4 ))P

3

2 4k t3 4003

+ my(t - %(klt + kot 3

+ etCees (k4)
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Equating coefficients of each pover of t in Equation (4k), after expand-

ing each term gives

%y
kl - .1(1-_;—) ‘ (45)
2k 2k
S PP )
etCoee

Equations (b1) and (L45) may be solved for k;, m,:

c’o hc ,4
k = E‘-; -1 +/\/1+-p-- (47)

o
Eg
,..1.;‘;3 E +4/1+§;£] (48)
Equations (42) and (46) may be solved for k,) B, considering k;, my known:
kp = g_'_g _ri'i (49)
c oy - kl
g )
"R St

Equation (39) can now be used with the coefficients m,, m, glven by (48)
and (50) to derive the second approximation of t, corresponding to the
approximation of the surface pressure by the first two terms of (37).

If this epproximation is considered adequate up to a time to, then the

value of z, at this time is 2203

Ty = Mt * Y (51)

A storting point zl(t) for the computations using Equation (31) is
now obtained by sudstituting (51) into (35) and (36).
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It may be shown that using only the first term of (51) is equiva-
lent to the first approximation given above.

It should be noted that in any case, in the successive steps using
Equation (31), 2, 1s computed first from Equatios (31) and then t, 1s
computed from Equation (27). The next step starts from zl(t) computed
by Equations (35) and (36) using s, in place of s, and ¢ .

V. NUMERICAL EXAMPLE:

The following data are chosen as an illustration:

€ - 0.02
E = 1lx 106 psi
. p = k.Ob slugs/rt3
From these data
C = 5,960 ft/sec

The pressure time history at the surface is assumed given as shown
in Figure 6. The peak pressure P, 8t t = O 18 not shown but vas 184,000
psi. The impulse for the assumcd loading is shown in Figure 7.

The computation is begun by applying the first approximation dis-
cussed above for the first 10 millieeconds. Equation (31) is then
epplied repeatedly to develop the z versus t curve shown in Figure 8.
From Equation (22), io can be derived for various t and g, , u_ can be com-

puted from Equations (5) and (6). Figure 8 shows the values of Zgr O,
and ﬁs plotted versus t.
To find the stress and velocity at a field point £ = 500 feet, t =

200 m3, the characteristice throuzh this point are drawn to locate points
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l and 2 on the z g versus t curve as shown in Figure 8. Reading the Os

and u, curves directly below points 1 and 2 yields the values

Opo * 4,000 psi u, = 58 ft/sec

9, = 10,000 psi u, =103 ft/sec

Substituting these values into Equations (20) and (21) ylelds the field

values for 2 = 500 feet, t = 200 ms:

o, = 3,230 psi u e 62.6 ft/sec

The values of LA and u at the surface and at depths of 500 and TOO
feet were computed for various times. The resulte are plotted in Fig-

ures 6 and 9 against time after arrival of the shock wave for each

point.

VI. COMPARISON OF PLASTIC-ELASTIC MEDIUM TO A LOCKING MEDIUM.

The blast pressure at the surface £ = O derived in the example above
for a plastic-elastic medium was applied to & locking medium also for
comparison of the responses of the two media. The locking medium is
defined by the stress-strain curve shown in Figure 10.

The response of a locking media to & given surface pressure of the
type shown in Figure 3 has been studied in Reference [1] . .. The results
may also be derived as a limiting case (¢ -+ ©) of the problem treated

above. The location of the shock wave front at any time is given by
t

z, = ['5%‘; [I(t) at }1/2 (52)

{1] Salvadori, Mario G.; Skalak, Richard, end Weidlinger, Paul "Stress

Waves in Dissipctive M2dia" fTransactions of the New York Academy of

Scienees, ESor. II, Vol. 21, No. 5, Poes L27-434.
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where I(t) is the impulse applied at the surface fion tim» ».ro to time t:

t
I(t) = f p (t) at (53)

(-]
Figure T shows the impulse of the surface pressure used in the present

examples. The stress immediately behind the shock front is

2
o e X [H.E).} (54)
c
end the particle velocity for all particles behind the wave front is:

o - ) (55)

PZg
The numerical results for the following astumed values are shown in

Figure 1l1:

p = L.ob slugs/ft3

ec = 0.02

These are the same values as assumed for the plastic-elastic medium. The
vertical stress and particle velocity immediately behind the shock wave-
front in the plastic-elastic medium due to the same surface pressure are
shown in Figure 11 also for comparison. In both cases the stresses
shown are the peak stresses experienced at a given depth. The same is

true of the particle velocities.
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BYNOPSIS

Asymptotic short time and long time solutions are derived in closed
form for the spherical wave propagation im em infinite, ideal locking
medium due to various types of time veryimg pressures spplied to the sur-
face of a spherical cavity. Ameng these are: (a) a constant pressurs;
(v) & center of dilatation; (c) an adiabatic gas expansion; (d) an energy

input due to an exploding point mass.
INTRODUCTION

The propagation of plane waves in varieus types of locking media has
been considered by several authors D&] » [SJ » [6] « 8pherical waves in
plastic locking media were investigated by Kompaneets E{] and more recently
by Zvolinskii who derived the wave equations for an elasto-plastic medium
of limited compressibility [8] .

Since, in general, closed form solutions of this type of problem
cannot be obtained, asymptotic glosed form solutions are given in this
peper for an infinite ideal locking medium. An equation of motion is first
derived for large strains and displacements when a variable pressure is

spplied to the surface of a spherical cavity. It is then shown that its

D&] "Stress Waves in Dissipative Media"” by M. G. Salvadori, R. 8kalak,
P. Weidlinger, Transactions New York Academy of Science, Ser. II, Vol. 21,
Ko. 5, pp m*uBh) 1959.

[SQ " Waves and Shocks in Locking and Dissipative Media" by M. G. Salvadori N
R.

kelek, P. Weldlinger, Journal Engineering Mechanics Division, ASCE, Vol.86

April 1960

[6] "On the Plane Motion of Saamd" by A. I. Ishlinskii, Ukr.Math. Journal,
Vol. 6, No. h, 195“0

[7] "Shock Waves in Plastic Compacting Media" by A. S. Kompaneets, Proc.
Acal of 8Science , USSR, 1956, Vol. 106, No. 1, pp 49-52.

EB] " "On the Emission of an Elastic Wave from a Spherical Explosion in
tbe Grmd” by Ro V. Zvolinskii, Po "o H. Vol. 2“, NO. 1, 1960, pp 126"133-



early .uu ssymptotic solution is the rigorous solution of the same prob-
lem when small strains and displacements are considered. The long time
asymptotic solution of the sams equation is then shown to be the rigorous
solution for a point source pressure when large strains and displacements
are again considexed.

The behavior of s three-dimensional ideal locking medium under com-
pressive stresses is characterised as follows:

(a) At first the material of initial density Py does not offer re-
sistance to compression but, once a critical valus of the strain is reached,
the density changes abruptly to a vaiue Py and & constant value of the |

dilatation:

te 1-p/p <1 (1)
1s maintained from then on (Figure 1) .
(b) During the subsequent motion vith & constant density Py the
material satisfies the three~dimensional yield condition derivable from

Coulomb's lav of failure [9] :
0. =0y = o +%—:—§ (°r"'°9) (2)

vhere, due to symmetry, the radial and tangential stresses Ops Og Are
principni stresses, the constant ¢ is proportional to the cohesion, and
k 18 & function of the coefficient of internal friction.

The sbove described behavior is typical of certain cohesive granular
soils under high compressive stresses. Bince under such stresses the ef-
fect of cohesion becomes negligible as compared to that of friction,

(9] "on Comloub's Law of Fatlure in Soils”, by R. T. Bhield, Journal
¥ech. Phys. Bolids, 4(1955), pp 10-16, May 1960.
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Equatiocn (2) decomes:

69 = kﬂr (3’

vith
0<k<1l (3a)

2. BPHERICAL WAVE BQUATIONS.

Consider a spherical cavity of imitial redius ry in an infinite
ideal locking medium. From t = O on the cavity boundary is subjected to
& uniform pressure of intensity p ,which is a function of the expanding
cavity radius T, Let r be the Lagrangian coordinate of a particle, and
v 1ts radial displacement at & time t, vhen the medium has been compacted
to a density » up to a distance R from the ocavity center, while beyomd R
the medium is at rest with a density p_ (Pigure 2).

Under these assusptions conservation of mass requires that:

(r~w)3a 1—]_'—‘1'3 - 1—5—5“3 ()

and, in particular, that at the cavity boundary, vhere r = r, + vo- r,t

-1/3
rag - fte - 0w ] (5)

For § << 1, and at an early time when the change in the cavity radius is

negligible, so that r o™ F1» the ratio x spprouches the value:

x, = R/ri (6)
At late times when R 1s large enough for (1 - g)(ri/!!)3 to de much less

than §, the ratio x spproaches the constant value;

x, = 43 (7
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Denoting time derivatives by dots, the particle velocity at r (¥ = r)

becomes, by Equation (4):

v = (R/r)? R (8)

and at the vave front (r = R):

“vl_a - R (9)

The particle acceleration, by Equation (8), becomes;

v = 8(R%R + 2R)r 2 - 2¢%R"Rer"0 (10)

The equation of motion for an elementary volume of soil in spherical

coordinates (Figure 3) is given by:
B 2(1 ~ X) .
& ¢ T Op = = PV (12)

where ¥ is defined by Equation (10), and its particular solution satisfy-

ing the boundary condition:

cr] = p(r,) (12)
I =Y

is for k ¢ 1/2:

-2+2k oyt e ep 242k -1
o, = P(l‘o)(;i') + m (RR + 2RR") l’j(;.—:') .- (;:;) } +

2

P18 beo [ r, ~2+2k Ty }

+ —— RR | () - ()
(1 + x)r, Fo To

(13)

and for k = 1/2:

-1 Pt Dss e -1
o, = p(ro)(;-:-) -qo (H. m‘)(é) Ln(r_:) .

2
pyé
2 71 heo r
+ RR™ | (==L . (Iy-b

3 re [r°) (’o) :I

(x = 1/2)  (13a)
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Conservation of momentum scross the wave front (r = R) requires, by

Equation (9), that: -

o] = me- My (1)
rsR

Setting this value of o, in Equ(13),(13s), and making use of Equation (5),
the equation governing the motion of the wvave front becomes:

+2

arR® 2

o - + pR %[(1_” (15)

in vhich the varisble coefficients a and p are given for k ¢ 1/2 by:
¢ « oy &

(x §1/2)  (16)
2-21:)

» b
T 0D _‘(x-x

b - 2[’-‘2'&*1&-1?(1-;) (x - ) -

and for k = 1/2 by

s I—E].' X ln X
(x « 1/2) (16e)

p-a[x+1-2_—‘x2nx-§1—_LE(xu-x)]

III. Short Time Asymptotic Solution (Finite cavity, small strain, small

displacement solution).

Bubstituting x = x_ from Equation (6) into Equations (16) one obtains
the differential equation valid for small displacements. A fuxther simplifi-
cation is obtained by considering the strains to be small, i.e., neglecting
terms in [2 and,hence, the third term at the right hand member of p in
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Equations (16) or (16a). Bince Equation {6} is valid when the expansion
of the cavity is negligible, and the pressure p is considered a function

of the cavity radius Ty the pressure is to be assumed constant:
p(ry) = »p (17)

. For an explosion of yield W and gas constant 7

W (10]
b/3nr3

P = (7 -1) (a)

The solution of Equation (15) in terms of the non-dimensional wave front

radius:
x, = R/r1 (6a)
thus becomes:

.o 2(2 - 1)p_
xs.

1 1,3 1 h-2k
- _.(x - l) - e cs——— (K - lﬂ (18)
glgrf x:(l - xt 2k)2 [3 8 b -2x °

The corresponding solution for k = 1/2 igs;

o) 1 3
x(3fn x« 1) +1 18
chrf nghaxs {js l & J (25a)

IV. Iong Time Asymptotic Solution (Point Source, finite strain, large

dicplacement solution).

Assuming for x the value §'1/3 given by Equation (7), the coefficients
o and B of Equation (15) become constant, and depend on § and k only. This
equation, rigorously valid for ry = O, coincides with the equation derived

by Konyaneeta.[j]

f\f? "A lfzthod of Concealing Underground Nuclear Explosions" by A. L. Latter,

e Lﬁiﬂzicr, E. A. Martinclli, W. G. McMillan; R-348, The RAND Corporaticn,
ves 20, 1903,
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mmmmmawmuwme&mnm
(a) Center of Dilatation.
_The magnitude P, of the total foves emerted em the cavity surface
1s eenstant in time so that, letting:
':a;-' ] hq&t)r: (29)
the varisble pressure p, by Byuations (b) ant (9), Dessmes:

»R) —-573—-,° (20)
hxg

The corresponding solutien of Equatiom (15) ts:

ke

.2 %o 3 -2
Rl @ enn ~ @

It.tnunt-tl, mn-nl, Poboccln gero, the wave fromt propagates
with a velocity: 2

2 T R R -8/
A B ronrrprl LR E LU

8ince 8/a > 2 for all values of { and k, g approaches sero asympto-
tieally and the wave front never stops. This result stems from the neglec-
tien of the achesion ¢ in Equation (2)1 a fimite value of ¢ gives a finite
time at vhich the motion stops.

(v) Expansion of An Ideal Cos.

In the expansion of an ideal gas the pressure p follovs the lawt

Um p(r )r37 - p(r )r37 - K (23)
- 1”1 oo

r, 0

vhere 7 and K are constant characteristics of the gas and of the energy

of the explosion.
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The solution of Equation (15) when the pressure p(ro) is defined by
Equetion (23) and p/a > 37 (ll), is

2 x4 =37
e SRR )13 (4)

In this case also the introduction of a finite value for the cohesion intro-
duces & finite stopping time, as shown by Kompaneets [7:]
(¢) Exploding point mess. [12]

Consider a point mass M located in the medium at r « 0, which at
t = 0 explodes so that its particles acquire a radial velocity r o* Assun~-
ing that these particles remain on the boundary surface of an expanding

spherical cavity of radius ro, the total kinetic energy at a time t 1s:

R
T e !2'- fhﬂnlrai-a ar + % Mz"i (25)
r

0
and, by Equations (7), (8) and (25), the rate of increase of this energy is:

&z - Empl(;"‘/ 3. 1)rd gt ﬂ R %% + 6m, P73 )RR (26)

The rate of energy loss across the shock front is (Figure 4):

dE 1

Fﬂ L E Git (27)
= R

In the particular case of k = 1 no other energy loss can occur within the

medium so that:
daT an
aR*ta"© (28)

Hence by Equations (26) and (27):

(R3 + rz)g; +3u R = 0 (29)

(11) For p/a < 37 there are no solutions of the point source equation.

[12] The authors are indebted to Dr. H. H. Bleich for this solution.



-

vhere
3. M woeit e —t (30)
AT AT 6173 - 1)

The solutiom ef Equation (29) with R(0) = R o+ 8nd hence an energy imput

%Miﬁ,il

R R,31°*
g [ w]

vhere 1/2< p< 1l for 0< § < 1.

VI. Intermediote Range 8olutions.

The veriable coefficients o and p of Equation (15) approach their
asymptotic values for R—» , but become practicelly constant &t finite
velues of R depending on k and §. For example, the behavior of a and B
versus x, = R/x'i 1s given in Figures (5a) and (50) for k « 1, 1/2, and 0
when g = 0.1.

The solution of Equation {15) in the intermediate range between the
two asymptotic short time and long time solutions may be obtained by
numericel means starting at the limit of the range of validity for either
solution and integrating forward or backward, respectively.

The constant K, needed to continue the intermediate time solution for
an explosion is obtained by Equation (23). Table I shows the range of

validity of the two asymptotic solutions.

Table 1
(t = 0.1)
Bhort Time I.ong Time

B 1.00 1.02 1.0 1.06 1.08 1.0 1.25 1.50 10 20 =
i
xs 1.00 1.02 1.04 1.06 1.08 1.10 1.25 1.50 e oa -
x 1l.00 1l.02 l;Oh 1.05 1.07 1.09 1.21 1.40 2.14% 2.15 2.15
xL - - - -- -e - -- -e 2.15 2015 2015
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